
Knowledge representation patterns
for concepts defined in a Norm

Discussion document

Author: Massimo Coletti

Director Security and Control Systems

Banca Finnat Euramerica S.p.A.

Version draft 0.1 released on May 31, 2006

Abstract
This paper discuss some issues related to the knowledge acquisition process from a corpus of normative
documents.

The specific point discussed is the best pattern usable to represent the concepts described and defined
by the norm text. The context of this project requires that the resulting ontologies will be aligned to the
DOLCE+ foundational ontology.

Two patterns are discussed, one leading to an OWL-Full coding, the other compliant with OWL-DL
limitations, with a preliminary analysis of benefits deriving from the two alternatives.

The document is intended as a discussion basis, within the project team, and the community of
ontology practitioners.

Copyright Notice
This work was developed by: Banca Finnat Euramerica S.p.A., OpenTech S.r.l. and Massimo Coletti

This work is licensed under the Creative Commons Attribution-NoDerivs 2.5 Italy License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/2.5/it/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

The problem
Our need is to create a unified conceptual view of a corpus of norms.

Each norm was analyzed, and the relevant concepts defined or referenced in the norm are listed. Now
we have the problem of representing the conceptual relations among concepts, and between concepts
and the norm sections defining them.

Our goal is to capture this conceptual model in an ontology, coded with the OWL language.
Furthermore, we would like to align this conceptual model with DOLCE Lite plus [DOLCE], a
foundational ontology. This alignment is aimed at obtaining a well-founded conceptual model.

The Solution
I have developed two patterns to solve this problem. The first pattern require the adoption of OWL-
Full, but is more flexible.

The second pattern allows an OWL-DL flavor, but gives to the knowledge engineer a rigid framework.

First pattern: Concepts as classes
This pattern was suggested by [Noy2005]. The concepts found in the normative corpus are coded as
owl:Class, as subclasses of a generic class.

Furthermore – as an alignment to the DOLCE ontology – the concept is classified as a subclass of
edns:concept.

The following diagram shows the class hierarchy:

The Compliance-Concepts class is an abstract superclass used to group all the concepts defined in our
ontology.

The following UML diagram shows instead the pattern diagram:

In the diagram, you can see that the Concept is coded as a “Class” in the OWL terminology, while
“Norm_part” (is the concepts that defines the sections from which a norm is composed) are coded as
individuals.

The “concepts” property, which lists all the concepts that are defined within the text of a single section
has the top class owl:Thing as range. This features allows the selection of an owl:Class as an

cd Concepts-as-classes

«Class»
Concept

«individual»
Norm_part

«annotation»
rdfs:isDefinedBy

«property»
concepts

«Class»
owl:Thing

range
«asserted-instance»

«range-of»

«domain-of»

«annotation-value»
«annotation-property»

asserted instance of the range class.

The inverse link is represented as an annotation property of the concept, using the isDefinedBy
property.

The knowledge engineer is free to “configure” each single concept, adding properties and other
elements that help capturing the doamain information.

Second pattern: concepts as individuals
This pattern sees the concepts defined as individual of a “Domain_Concept” class.

The following UML diagram illustrates the pattern:

The diagram shows that concepts are coded as individuals, as well as norm section elements.

Two properties link the two classes:

• referenced-by, classifies weak references of the concept in the text of the norm part;

• defined-by, states that the description of the concept can be found in the specified norm
section.

The two properties have associated inverse properties, references and defines. There is a
hierarchy between the two properties (represented with a generalization association), because the first

cd Concepts-as-individuals

«individual»
Concept

«individual»
Norm_part

Is the "classic"
subsumption
relationship, relating a
more general concept,
with a more specific
one.

«property»
defined-by

A concept may be defined in one or
more norm sections.
The definition means that the textual
content of the sections is the
"constitutive" text for the concept, or it
provides legal requirements about
the concept.

«property»
defines

The role relationship links
different concepts, that are not
hierarchically dependent (i.e.
outside subsumption trees),
but one concept identifies a
particular that plays a role in
another particular.

«property»
referenced-by

«property»
references

«inverse»

«range-of»«domain-of»

role

«inverse»

«range-of»

«domain-of»

subsumption

subsumes the second.

The diagram shows also two relationships defined among individuals of the Concept class. The
subsumption relationship links more generic concepts with more specific ones; it is the parallel of the
rdfs:subClassOf relationship. The role relationship models many different kind of relationships where
one concept plays some kind of role in another concept. Examples are:

• a “responsible” plays role in the organization that he manages;

• a “document” plays a role in the accomplishment of a norm prescription;

• a “policy” plays a role in the procedure followed during the execution of a process.

Solutions evaluations
Here I will try to develop a quality comparison of the two patterns, having in mind ontology quality
measures and usability measures. My attempt is not methodologically correct; for a deeper analysis of
ontology evaluation, you can see: [GANG05].

Criteria Pattern 1 Pattern 2
Graph complexity This pattern shows a simpler

graph.
The increased complexity is a
result of the complete expression
of inverse relationships.

Reasoning complexity This pattern is advantaged,
having an OWL-DL profile.

Verbosity Is lower: disjoint predicates are
not needed, as individuals are
assumed to be different
instances.

Design flexibility Is higher: concepts are expressed
using the full OWL language
features.

If further binary predicates are
required, the designer is however
free to code specific subclasses,
with the required properties.

User skill required Is lower, as the architecture of
the ontology is already defined.

User interface Dealing with class trees may
allow a clearer comprehension of
the conceptual model.

The result (of my evaluation) is a slight preference for pattern 2.

Transformation between patterns
The transformation from an OWL file coded according to the first pattern, to one coded according to
the second (and vice versa) is straightforward.

An XSL stylesheet have been developed for this kind of transformation.

The availability of a simple transformation pattern is a guarantee for the developer that the switch from
one pattern to the other is not so painful.

First pattern example
This is a concept coded according to the first pattern:
<owl:Class rdf:ID="Garante">
 <rdfs:subClassOf rdf:resource="&nof;Domain_Concept"/>
 <owl:disjointWith rdf:resource="#...."/>
 ...
 <rdfs:isDefinedBy rdf:resource="&l196;art153"/>
 <rdfs:isDefinedBy rdf:resource="&l196;art154"/>
</owl:Class>

Second pattern example
This is a concept coded according to the second pattern:
<nof:Domain_Concept rdf:ID="garante">
 <nof:defined-by rdf:resource="&l196;art153"/>
 <nof:defined-by rdf:resource="&l196;art154"/>
 <edns:specializes rdf:resource="#authority"/>
</nof:Domain_Concept>

References
[DOLCE] " DOLCE : a Descriptive Ontology for Linguistic and Cognitive Engineering"
2006 Laboratory of Applied Ontology, Italian National research Council
[Noy2005] Natasha Noy, Michael Uschold, Chris Welty " Representing Classes As
Property Values on the Semantic Web" 2005 http://www.w3.org/TR/swbp-classes-as-
values/ ,

	Abstract
	Copyright Notice

	The problem
	The Solution
	First pattern: Concepts as classes
	Second pattern: concepts as individuals
	Solutions evaluations

	Transformation between patterns
	First pattern example
	Second pattern example

	References

